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ABSTRACT

A phenomenological renormalization scheme for hadronic diffraction is pro-
posed, which unitarizes the triple-pomeron Regge amplitude while preserv-
ing its M2 and t dependence. Predictions for pp/pp̄ single diffractive, dou-
ble diffractive and double pomeron exchange cross sections are presented and
compared with experimental results. A new interpretation of hard and deep
inelastic diffractive data emerges in which the momentum sum rule is obeyed
by the constituents of a pomeron described as a mixture of quark and gluon
color singlets in a ratio dictated by asymptopia.

1 Introduction

It is well known that pomeron exchange in Regge theory accounts for the main features of

high energy elastic, diffractive and total cross sections [1, 2]. In particular, for proton-

(anti)proton interactions, it accounts for the rise of the total cross section and the

shrinking of the forward elastic peak with energy, and also describes correctly the M2

and t dependence of single diffraction dissociation (SD). Furthermore, the concept of

factorization provides relationships between cross sections that pass successfully the test

of experimental observation [1].

The early success of the simple Regge-pole model has been, however, tempered by

the more recent measurements of the pp̄ single diffraction (SD) dissociation cross section

at the Spp̄S Collider [3] and at the Tevatron [4, 5]. As seen in Fig. 1, the theoretical

prediction for the SD cross section based on standard Regge theory (dashed curve) has

a much steeper energy dependence than the data. Such a result was, of course, not

unexpected, since it is well known that the SD cross section in Regge theory with a

pomeron trajectory intercept α(0) ≥ 1 rises faster than the total cross section, and if
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this rise were to continue it would lead to violation of unitarity at the TeV energy scale.

However, the need for unitarizing the simple Regge-pole description of cross sections

was elevated to a crisis by the pp̄-collider measurements, and several attempts have been

made to implement unitarization, based generally on applying “screening corrections” to

the diffractive amplitude (e.g. [6]). In this paper, we propose a simple phenomenological

unitarization procedure, which consists in renormalizing the “pomeron flux factor” that

appears in the triple-pomeron amplitude for SD so that its integral over the entire

diffractive phase space, which denotes the total number of pomerons “carried” by the

proton, is not allowed to exceed unity. This procedure preserves the shapes of the M2

and t distributions in SD and predicts correctly (solid line in Fig. 1) the experimentally

observed SD cross section at all energies.

Below, after a discussion of the standard Regge theory for proton-(anti)proton cross

sections, we present our renormalization procedure and apply it to single diffraction,

double diffraction and double pomeron exchange, and also to hard diffractive and deep

inelastic scattering processes, where it leads to a pomeron whose hard constituents satisfy

the momentum sum rule.

2 Standard Regge single diffraction

In standard Regge theory with a supercritical pomeron trajectory, α(t) = 1 + ε + α′t,

the pp̄ total, elastic, and SD cross sections are given by (see Fig. 2)

σT = β1(0)β2(0)
(

s

s0

)α(0)−1

= σpp̄
0

(
s

s0

)ε

(1)

dσel

dt
=

β2
1(t)β

2
2(t)

16π

(
s

s0

)2[α(t)−1]

=
σ2

T

16π

(
s

s0

)2α′t

F 4(t) ≈ σ2
T

16π
ebel(s)t (2)

F 4(t) ≈ eb0,elt ⇒ bel(s) = b0,el + 2α′ln
(

s

s0

)
(3)

d2σsd

dtdξ
=

β2
1(t)

16π
ξ1−2α(t)

β2(0) g(t)

(
s′

s′0

)α(0)−1
 = fP/p(ξ, t) σP p̄

T (s′, t) (4)

where β1(t) is the coupling of the pomeron (P) to the proton, F(t) the (anti)proton

form factor, g(t) the triple-pomeron coupling, s′ the s-value in the P − p̄ reference

frame, ξ = s′/s = M2/s the fraction of the momentum of the proton carried by the

pomeron (M is the diffractive mass), and s0, s
′
0 are constants.

In (4), in analogy with (1), the term in the square brackets is interpreted as the P − p̄
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total cross section

σP p̄
T (s′, t) = β2(0)g(t)

(
s′

s′0

)α(0)−1

= σP p̄
0

(
s′

s′0

)ε

(5)

where in writing β2(0)g(t) = σP p̄
0 we have assumed that the triple-pomeron coupling

constant, g(t), is independent of t, as suggested by experiment [1]. This interpretation

leads naturally to viewing SD as a process in which pomerons “carried” by the proton

interact with the antiproton. The pomeron flux factor is given by

fP/p(ξ, t) ≡
d2σsd/dξ dt

σP p̄
T (s′, t)

=
β2

1(t)

16π
ξ1−2α(t) =

σpp
0

16π
ξ1−2α(t) F 2(t) (6)

The constants s0 and s′0, which represent energy scales in the pomeron propagator,

are not specified by the theory. For a universal pomeron the energy scale should be

process independent and hence s′0 = s0. Thus, since β2(0) = σpp
0 = (σT s−ε) sε

0, there

are two free parameters in (4) which cannot be determined from the elastic and total

cross sections, namely s0 and g(t) = g(0). From the SD cross section one can determine

only the product g(0)s
ε/2
0 , so that in the standard Regge theory the normalization of

the pomeron flux factor, which depends on s0 and thereby on the value of g(0), is

arbitrary. However, the pomeron flux renormalization scheme that we propose provides

an additional constraint, so that the constants s0 and g(0) can now be determined

independently, resulting in an unambiguously normalized pomeron flux and a unique

triple pomeron coupling constant.

For the numerical evaluation of fP/p(ξ, t), we use the pomeron trajectory obtained

from the recent CDF results [4]:

α(t) = 1 + ε + α′ t = 1 + (0.115± 0.008) + [(0.26± 0.02) GeV−2] t (7)

The value of ε is the weighted average of three values: one obtained from the rise of

the total cross section with energy, ε = 0.112 ± 0.013, and the other two from the ξ-

dependence of the SD cross section at
√

s =546 GeV, ε = 0.121 ± 0.011, and at 1800

GeV, ε = 0.103± 0.017. The value of α′ is obtained [4] from a fit to the form of Eq. 3 of

experimentally measured elastic scattering slope parameters at small-t by CDF and at

lower energies at the ISR. The pomeron trajectory in (7) is somewhat different from that

being used widely in the literature, α(t) = 1.08+0.25 t, which was derived [2] before the

CDF data were available.

Anticipating the result s0 ≈ 1 GeV2 that we will obtain by applying our renormaliza-

tion procedure to SD, and using the CDF total cross section value of 80.03± 2.24 mb at

1800 GeV, we obtain σpp̄
0 = σpp̄

T s−ε = 14.3 mb and σpp
0 /16π = 0.73 GeV−2. Note that at√

s=1800 GeV the terms in the cross section that fall as 1/
√

s or faster are negligible

and therefore Eq. 1 can be used to evaluate σpp̄
0 directly from the measured σT .
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The nucleon form factor, F (t), is obtained from elastic scattering. In the small-

t region, the t-dependence of elastic scattering is represented well by F 4(t) ≈ eb0,elt.

From the elastic slope parameter at
√

s =1800 GeV, bel = 16.98 ± 0.25 GeV−2 [4],

using α′ = 0.26 GeV−2 we obtain (Eq. 3) b0,el = bel − 2α′ln(s/s0) = 9.2 GeV−2 and

hence F 2(t) ≈ eb0,sdt = e(1/2)b0,elt = e4.6t. The value 4.6 is consistent with b0,sd =

4.2 ± 0.5 GeV−2 measured in [4] at
√

s = 1800 GeV. However, this simple exponential

expression underestimates the cross section at large t. Since the pomeron seems to couple

to quarks like an isoscalar photon, it was proposed [7] that the appropriate form factor

for elastic and diffractive scattering is the isoscalar form factor measured in electron-

nucleon scattering

F1(t) =
4m2 − 2.8t

4m2 − t

[
1

1− t
0.7

]2

(8)

where m is the mass of the nucleon. This form factor describes well the t-dependence of

elastic scattering over a broad range of t [7], but its validity in high-t diffraction has not

been adequately checked due to the sparseness of relevant data. At small t, F 2
1 (t) can

be approximated with an exponential whose slope parameter, b(t) = d
dt

lnF 2
1 (t), is 4.6

GeV−2 at t ≈ 0.04 GeV2, consistent with the simple exponential expression we obtained

above. Below, in deriving the energy dependence of the SD cross section, we will use

F 2(t) = e4.6t, since it corresponds closely to the expression used by experimenters to

derive the integrated SD cross sections from data.

3 Renormalization of hadronic diffraction

Our unitarization procedure consists in renormalizing the pomeron flux factor by treating

it as a probability density whose integral is not allowed to exceed unity, i.e.

fN(ξ, t) =
fP/p(ξ, t)

N(ξmin)
; N(ξmin) =

{
A(ξmin) ≡

∫ 0.1
ξmin

dξ
∫∞
t=0 fP/p(ξ, t) dt

1, if A(ξmin) < 1
(9)

For pp̄ soft SD, ξmin=M2
0 /s with M2

0 = 1.5 GeV2 (effective threshold) and ξmax = 0.1

(coherence limit) [1], i.e. the flux is integrated over the entire diffraction region. An

approximate numerical expression for the flux integral is given by

N(ξmin) ≈
(

ξ0

ξmin

)2ε (
s0

1 GeV2

)ε

⇒ 0.25 s2ε [s in GeV2] (10)

where ξ0 = 0.004 is the ξmin value for which the flux integral is unity, and in the last step

we used ξmin = 1.5/s (valid for soft SD) and s0 = 1. Because of the 1/ξ1+2ε dependece

of the flux factor and the 1/s dependence of ξmin, the flux integral is insensitive to the

coherence limit, ξmax, for which we use the conventional value of 0.1.
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3.1 Single diffraction dissociation

The total proton-(anti)proton single diffraction cross section values from fixed target

(pp at
√

s = 14 and 20 and pp̄ at 14 GeV) [8], ISR [9], UA4 [3], E710 [5] and CDF

[4] experiments are shown in Fig. 1. Dissociation of both nucleons is included, and the

published cross sections were corrected to correspond to ξ < 0.05 in order to reduce

possible non-pomeron contributions. The dashed curve in this figure shows the cross

section calculated using Eqs. 4, 5 and 6 with the parameters discussed above and σPp
0 =

2.6 mb, chosen to fit the low energy data. As mentioned earlier, the calculated cross

section rises much faster with energy than the observed and becomes comparable to the

total cross section at
√

s ≈ 1.8 TeV, in violation of unitarity.

The solid line in Fig. 1 shows the result obtained with the renormalized flux. The

position of the ‘knee’ in this curve occurs at the
√

s-value at which the flux integral

becomes unity, which depends on the parameter s0. Therefore, s0 is determined from

the position of this ‘knee’ in the data. In Fig. 1, the ‘knee’ occurs at
√

s = 22 GeV

for s0 = 1 GeV2. The uncertainty in s0 is given by δs0/s0 = −2δs/s = −4(δ
√

s)/
√

s.

Thus, a (reasonable) 10% uncertainty in the
√

s-position of the ‘knee’ results in a 40%

uncertainty in s0. However, the effect on the flux normalization below the ‘knee’, which

varies as sε
0, is 4%, and the effect on the determination of the triple-pomeron coupling

(see below), which is ∼ s
−ε/2
0 , is only 2%. The flux normalization above the ‘knee’ is, of

course, not affected.

The renormalized differential and total SD cross sections are given by (s′ = M2 = sξ)

d2σsd,N

dtdξ
= σPp

0

(
sξ

s′0

)ε

fN(ξ, t)

σsd,N(ξmin < ξ < ξmax) = σPp
0

(
s

s′0

)ε ∫ ξmax

ξmin

∫ ∞

t=0
ξε fN(ξ, t) dξdt = σPp

0

(
s

s′0

)ε

〈ξε〉

(11)

where, again, s′0 = 1 GeV2 and ξmin = (1.5 GeV2)/s. Since ξmin decreases with increasing

s, 〈ξε〉 also decreases and therefore σsd,N increases at a rate slower than sε, i.e. slower

than the (dominant at high energies) pomeron exchange component of the total cross

section, which increases as sε. Thus, as required by unitarity, the renormalized SD cross

section remains safely below the total cross section at all energies.

Above
√

s = 22 GeV, where the pomeron flux factor integral becomes unity, the

total renormalized SD cross section, calculated from Eq. 11 and multiplied by 2, has an

approximately logarithmic s-dependence given by

σpp̄
sd(s)ξ<0.05 = 4.3 + 0.3 lns [s in GeV2] (12)
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3.2 Pomeron-proton total cross section

The pomeron-proton total cross section is related intimately to the renormalized SD

cross section through Eq. 11. Fitting the data with this equation not only yields the

constant σPp
0 but also verifies the assumed ∼ (M2)ε energy dependence, where M2 = s′

is the pomeron-proton center of mass energy. From this fit we therefore infer that

σPp
T = 2.6 (s′)ε mb [s′ in GeV2] (13)

Thus, the pomeron behaves like a hadron. The ratio of σPp
0 to σpp

0 is

σ
Pp/pp
0 =

σPp
0

σpp
0

= 0.18 (14)

3.3 Triple-pomeron coupling constant

From σPp
0 we obtain the value of the triple-pomeron coupling constant (see Eqs. 5 & 1),

assuming that it is independent of t:

g(t) =
g(t)β(0)

β(0)
=

σPp
0

(σpp
0 )

1
2

= 0.69 mb
1
2 = 1.1 GeV−1 (15)

This value of g(t) is almost a factor of two higher than the value g(t) = 0.364±0.025 mb
1
2

reported in Ref. [8]. This apparent discrepancy is due to the different parameterization

(ε = 0 and σpp
0 = σpp

T ) used in evaluating g(t) from the data in [8].

If the pomeron couples to quarks [7], the pomeron-quark coupling constant, β0, may

be evaluated by equating the value of σpp̄
0 of Eq. 1 with [3β0]

2, which yields

β0 =

√
σpp̄

0

3(h̄c)
= 2.0 GeV−1 (16)

The ratio of the triple-pomeron to the pomeron-quark coupling, g(t) to β0, is given by

g(t)

β0

= 0.55 (17)

3.4 Double diffraction dissociation

In double diffraction dissociation (DD) both nucleons dissociate, as shown in Fig. 3.

Assuming pomeron exchange and factorization, the DD cross section may be obtained
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from the SD and elastic scattering cross sections using Eqs. 11 & 2,

d3σdd

dM2
1 dM2

2 dt
=

1

dσel/dt

d2σ1

dM2
1 dt

d2σ2

dM2
2 dt

=

(
σPp

0

4
√

πh̄c

)2 (
sε

Ns

)2 ebddt

(M2
1 M2

2 )1+ε
(18)

where Ns is the integral of the pomeron flux factor at the s-value of the collision and bdd

the slope parameter for double-diffraction given by

bdd = 2α′ln

[
s s0

M2
1 M2

2

]
= 2α′ ∆y (19)

The nucleon form factors drop out in the division of the differential cross sections. In

(19), ∆y is the rapidity gap between the two diffractive clusters (see Fig. 3). If we now

apply the requirement ∆y > 2.3, which corresponds to the coherence requirement for

single diffraction ∆ysd = ln(s/M2) > ln(1/0.1) = 2.3, we obtain the coherence condition

for double diffraction:
M2

1 M2
2

s s0

< 0.1 (20)

With this condition as a constraint, bdd is positive for all mass combinations. If ∆y were

to become negative, which would correspond to mass clusters overlapping in rapidity, bdd

would also become negative and the cross section would increase with t. We therefore

interpret Eq. 20 to mean that coherence breaks down for rapidity gaps smaller than 2.3

units, and integrate Eq. 18 subject to the coherence condition to obtain the total DD

cross section (energies are in GeV):

σdd = K(s)
∫ 0.1s/1.5

M2
1 =1.5

∫ 0.1s/M2
1

M2
2 =1.5

dM2
1 dM2

2

(M2
1 M2

2 )1+ε ln(ss0/M2
1 M2

2 )
(21)

where K(s) =
1

2α′

(
σPp

0

4
√

πh̄c

)2 (
sε

Ns

)2

Table 1 lists cross sections at several energies calculated using this equation. The de-

crease of the cross section with energy is due to the faster increase of the elastic relative

to the diffractive cross section.

A practical way of measuring the inclusive double diffractive cross section at hadron

colliders is to look for events with a fixed rapidity gap centered at y = 0. Table 2

lists the cross sections expected at the Tevatron,
√

s = 1800 GeV, as a function of the

width ∆y of such a rapidity gap. These cross sections were calculated from Eq. 21 with

M2
1,max = M2

2,max = mp

√
s e−∆y/2. As shown, the cross section decreases slowly as the

rapidity gap width increases.

Using the rapidity gap technique, the UA5 collaboration measured the DD cross sec-

tion at the CERN Spp̄S collider and reported values of 3.5 ± 2.5 (4.0 ± 2.2) mb at
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Table 1: Total double diffraction cross sections.√
s [GeV ] σT

dd [mb]

30 3.1
200 2.3
630 1.7
900 1.6
1800 1.3
14000 0.75

Table 2: σdd versus ∆y at the Tevatron.

∆y (central) σ∆y
dd [mb]

2.3 0.59
2.5 0.57
3.0 0.52
3.5 0.47
4.0 0.42
4.5 0.39

√
s = 200 (900) GeV, respectively [11]. These values are within 1 σ of those in Table 1,

but are systematically higher. The higher experimental values may be attributed to

an underestimate of the detector acceptance for DD events, which was obtained with a

Monte Carlo simulation where single diffractive clusters were generated on each side of

the rapidity region and were allowed to reach independently and simultaneously mass

values up to M2
max = 0.05s. This procedure allows overlapping diffractive clusters in

violation of the coherence condition of Eq. 20, resulting in a lower acceptance for DD

events and hence a larger cross section.

At the Tevatron, where the energy of
√

s=1800 GeV provides a rapidity range of 15

units, accurate measurements of DD cross sections as a function of rapidity gap width

can be performed using minimum bias data triggered by the “beam-beam” counters.

Such data are already available in the CDF and D0 experiments. The measurements

can best be done by fitting the particle multiplicity distribution in a given region of ∆η

centered at η = 0 and extracting from the fit the number of excess events in the zero

multiplicity bin. The fraction of these rapidity gap events to the total number of events

in the sample can then be compared directly with the values in Table 2 divided by the

non-diffractive inelastic cross section of 50 mb.
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3.5 Double pomeron exchange

In double pomeron exchange (DPE) two pomerons, one from each incoming hadron,

interact to form a diffractive cluster of mass M centered at rapidity yM (Fig. 3). The

cross section for DPE is obtained from the SD and total cross sections using factorization

(see [10]):
d4σ

dξ1dξ2dt1dt2
=

1

σpp̄
T

d2σ1

dξ1dt1

d2σ2

dξ2dt2
(22)

The mass of the cluster and the rapidity of its centroid are related to the variables ξ1,2:

M2 = s ξ1ξ2 (23)

yM =
1

2
ln

ξ1

ξ2

The condition ξ1,2 < 0.1 for SD translates to the condition

M2 < 0.01s

Using Eqs. 1 and 11, and changing the variables from ξ1,2 to M2 and y, we obtain the

expression

d2σ

dM2dyM

= σpp̄
0

(
σPp

0

16π(h̄c)2

sε

Ns

)2 {
(M2)1+ε

[
(b0 + α′ln

s

M2
)2 − (2α′yM)2

]}−1

(24)

where b0 = 4.6 GeV−2 is the slope parameter of the simple exponential proton form

factor F 2(t), which is used here for simplicity. For a given mass M , yM varies within

the range ±1
2
ln M2

(0.1)2s
, so that |2yM | < ln s

M2 and the term in the square brackets is a

function decreasing logarithmically with increasing M2. As a result, the DP cross section

falls approximately as 1/M2. A numerical integration of this equation for the range 1

GeV2 < M2 < (0.1)2 s yields the inclusive DPE cross sections of 61, 76, 69 and 50 µb

at
√

s= 50, 630, 1800 and 14000 GeV, respectively. The calculated value of 76 µb at

630 GeV is consistent with the experimental value of 30-150 µb reported by the UA8

experiment [12]. The DP cross section is approximately constant through the entire

range from the ISR to the LHC collider energies. On a finer scale, it rises initially with

energy and then starts falling as the α′lns term in the denominator becomes comparable

to the slope b0.

4 The structure of the pomeron

The structure of the pomeron has been investigated in pp̄ colliders by UA8 [13], which

observed diffractive dijets at
√

s = 630 GeV and |t| ∼ 1.5 GeV2, and by CDF [14], which
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searched for and placed upper limits for diffractive dijet and W production at
√

s = 1800

GeV and t close to zero (the CDF data are integrated over t). At HERA, where e−p

collisions occur at
√

s ≈ 300 GeV, the quark content of the pomeron has been probed

directly with virtual high-Q2 photons in e−p deep inelastic scattering (DIS) [15, 16], and

the gluon content evaluated from diffractive DIS and photoproduction data[16]. Below,

we apply our renormalization procedure to the pp̄ collider and HERA results and obtain

the pomeron structure function.

4.1 Hard diffraction at pp̄ colliders

The study of hard diffractive processes at pp̄ colliders was pioneered by the UA8 exper-

iment, which observed high-PT [13] diffractive dijets in p + p̄ → p + J1 + J2 + X for

0.04 < ξ < 0.1 and 0.9 < |t| < 2.3 GeV2 at the CERN Spp̄S collider at
√

s = 630 GeV.

From the η-distribution of the jets, assumed to be due to collisions between the pomeron

and antiproton constituents, UA8 estimated that the partonic structure of the pomeron

is ∼ 57% hard [6β(1 − β)], ∼ 30% superhard [δ(1 − β)], and ∼ 13% soft [6(1 − β)5].

However, the measured dijet production rate turned out to be [17] much smaller than

the rate calculated for a pomeron made of hard quark or gluon constituents obeying the

momentum sum rule. The rate calculation was based on a standard pomeron flux in

a model [18] which extends factorization to hard processes. The discrepancy between

the measured and calculated rates was expressed in terms of a “discrepancy factor”,

D, by which the normalized hard structure function, 6β(1 − β), has to be multiplied

in the Monte Carlo calculation to yield the observed rate. This factor was found to be

D=0.46± 0.08± 0.24 (0.19± 0.03± 0.10) for a hard-quark(gluon) dominated pomeron

[17]. Clearly, this result shows that the momentum sum rule is not obeyed by the

pomeron in this model. However, in the standard (un-renormalized) theory, this ap-

parent discrepancy is not really meaningful, since the pomeron flux normalization is

arbitrary due to lack of knowledge of the energy scale in the pomeron propagator, s0.

A more meaningful test of the existence of a unique structure function for the pomeron

would be to compare the pomeron structure found by UA8 with that found at other

energies or in other processes. As we shall see below, such a comparison of experimental

data leads to inconsistencies in the standard flux D-factors, which are resolved by our

flux renormalization procedure. By renormalizing the flux, the rates predicted for UA8

decrease by a factor of ∼ 4.5, which is the integral of the flux at
√

s = 630 GeV, bringing

the D-factors close to unity and therefore into agreement with the momentum sum rule.

At the Tevatron, the CDF Collaboration has used the rapidity gap technique to search

for diffractive dijet and W production [14]. While dijet production is sensitive to both

the quark and gluon component of the pomeron, W production probes mainly the quark

component, since to leading order it occurs through qq̄ → W . Since no hard diffraction
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was observed, the CDF (preliminary) results are expressed in terms of upper limits at

95% CL. In the dijet case, for a hard-gluon pomeron structure the limit on the discrep-

ancy factor is D < 0.14 for the standard flux and D < 1.2 for the renormalized flux.

The standard flux limit excludes the UA8 central value of 0.19, although it overlaps with

its 1σ systematic error; the renormalized flux limit simply means that the observation

of no signal is consistent with the prediction based on the momentum sum rule. In the

W -case, no explicit upper limit is given in [14], but it is stated that the ratio of diffrac-

tive to non-diffractive events is ∼ 0± a few %, which for a full hard-quark pomeron

structure should be compared with the predictions of ∼ 23% for the standard flux, 17%

for a calculation [19] using the flux of [18], and 2.8% for the renormalized flux.

The UA8 and preliminary CDF results are all consistent with the renormalized flux

predictions based on a hard pomeron that obeys the momentum sum rule, while the

standard flux D-factors are almost mutually inconsistent and are too small compared to

the D-factors found at HERA, as will shall see below.

4.2 Deep inelastic diffraction at HERA

Both the H1 [15] and ZEUS [16] Collaborations have reported measurements of the

diffractive structure function FD
2 (Q2, ξ, β) (integrated over t, which is not measured),

where β (not to be confused with the pomeron-hadron coupling!) is the fraction of the

pomeron’s momentum carried by the quark being struck. Both experiments find that

the ξ-dependence factorizes out and has the form 1/ξ1+2ε, which is the same as the

expression in the pomeron flux factor (see Eq. 6). Moreover, the fits yield ε ≈ 0.1, which

is in agreement with the value measured in soft collisions. It therefore appears that the

same pomeron is involved in hard as in soft collisions.

The quark structure function of the pomeron can be obtained by dividing the measured

diffractive structure function by the pomeron flux and by the average charge of the

quarks in the pomeron. Such an analysis has been done by both H1 and ZEUS using

the standard flux factor. However, since flux renormalization alters the picture, we have

reanalyzed the H1 data using the renormalized pomeron flux1.

H1 integrates the diffractive form factor FD
2 (Q2, ξ, β) over ξ and provides values for

the expression

F̃D
2 (Q2, β) =

∫ 0.05

0.0003
FD

2 (Q2, ξ, β)dξ (25)

1Note added in proof : The ZEUS data, which are very similar to the H1 data, were not available at
the time of the writing of the original manuscript of this paper.
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The pomeron structure function is related to F̃D
2 (Q2, β) by factorization:

F̃D
2 (Q2, β) =

[∫ 0.05
0.0003 dξ

∫∞
0 fP/p(ξ, t) dt

N(s, Q2, β)

]
FP

2 (Q2, β) (26)

The expression in the brackets is the renormalized flux factor. The integral in the

numerator has the value 2.0, and the denominator shows explicitly how factorization

breaks down due to flux renormalization. This break-down of factorization, which is a

direct consequence of unitarization, does not affect the ξ distribution. For fixed Q2 and

β, ξmin = (Q2/βs). Therefore, the flux integral is given by (see Eq. 10)

N(ξmin) = N(s, Q2, β) ≈
(

βs

Q2
ξ0

)2ε

= 3.8

(
β

Q2

)0.23

(27)

where we have used
√

s = 300 GeV and ξ0 = 0.004, the value of ξmin for which the flux

integral is unity. Since ξ0 is larger than ξmin for all the (Q2, β)-bins of the H1 data, flux

renormalization must be applied to all the bins.

Assuming now that the pomeron structure function receives contributions from the

four lightest quarks, whose average charge squared is 5/18, the quark content of the

pomeron is given by

fPq (Q2, β) =
18

5
FP

2 (Q2, β) (28)

The H1 results for F̃D
2 (Q2, β) are plotted in Fig. 4a as a function of β for four Q2-bins:

Q2 =8.5, 12, 25 and 50 GeV2. Using the standard flux, the quark component of the

pomeron is fPq (Q2, β) = 1.8 F̃D
2 (Q2, β) (right-hand axis in Fig. 4a), where the factor of

1.8 is 18/5 divided by 2.0 (the integral of the standard flux factor). The structure in

Fig. 4a is rather flat in β, in contrast with the (mostly) hard structure found by UA8,

and has a small but significant Q2-dependence. The average value of the quark content

of the pomeron is f̄q ∼ 1/3.

Flux renormalization changes this picture significantly. The values of fPq (Q2, β) ob-

tained with the renormalized flux are shown in Fig. 4b. The renormalized points reveal

a mostly hard structure (similar to that of UA8!) with no visible Q2 dependence. We

take this last fact as an indication that the pomeron reigns in the kingdom of asymptopia

and compare the data points with the asymptotic momentum fractions expected for any

quark-gluon construct by leading-order perturbative QCD, which for nf quark flavors

are

fq =
3nf

16 + 3nf

fg =
16

16 + 3nf

(29)

For nf = 4, fq = 3/7 and fg = 4/7. The quark and gluon components of the pomeron

structure are taken to be fPq,g(β) = fq,g [6β(1 − β)]. The pomeron in this picture
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is a combination of valence quark and gluon color singlets and its complete structure

function, which obeys the momentum sum rule, is given by 2

fP(β) =
3

7
[6β(1− β)]q +

4

7
[6β(1− β)]g (30)

The data in Fig. 4b are in reasonably good agreement with the quark-fraction of the

structure function given by fPq (β) = (3/7)[6β(1 − β)], except for a small excess at the

low-β region. An excess at low-β is expected in this picture to arise from interactions of

the photon with the gluonic part of the pomeron through gluon splitting into qq̄ pairs.

Such interactions, which are suppressed by an order of αs, result in an effective quark

β-distribution of the form 3(1− β)2. We therefore compare in Fig. 4b the data with the

distribution

fPq,eff (β) = (3/7)[6β(1− β)] + αs(4/7)[3(1− β)2] (31)

using αs = 0.1. Considering that this distribution involves no free parameters, the

agreement with the data is remarkable!

5 Conclusion

Regge theory describes well the main features of available hadronic cross sections with

one notable exception: the predicted single diffraction cross section rises much faster

than the total, leading to violation of unitarity at present hadron collider energies. We

have proposed a simple phenomenological unitarization procedure, which slows down

the rise of the SD cross section to below that of the total and brings agreement between

theoretical predictions and all available experimental data for pp/pp̄ SD, DD and DPE

cross sections. This procedure, which leaves intact the ξ and t dependence of single

diffraction dissociation, consists of renormalizing the “pomeron flux factor” in the triple-

pomeron amplitude by resetting its integral over all diffractive phase space to unity

when it becomes larger than one. By applying our renormalization procedure to hard

diffractive production at hadron colliders and to diffractive DIS at HERA, we obtain a

consistent parameter-free picture of the complete pomeron partonic structure, in which

the pomeron appears as a momentum sum-rule obeying combination of valence di-quark

and di-gluon color-singlets in a ratio of 3÷4, as suggested by asymptopia for four quark

flavors.

2Note added in proof : From a flux independent measurement of the g/q ratio of the pomeron hard
partonic content based on the combined results of diffractive DIS and photoproduction data, ZEUS
reported [16] that between 30% and 80% of the momentum of the pomeron carried by partons is due
to hard gluons, which is consistent with Eq. 30.
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Figure 1: Total pp/pp̄ single diffraction cross section data (both sides) for ξ < 0.05
compared with predictions based on the standard and the renormalized pomeron flux.
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Figure 2: Feynman diagrams for pp̄ total, elastic, and single diffraction dissociation cross
sections, including the triple-pomeron diagram for single diffraction.
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Figure 3: Feynman diagrams, and rapidity regions occupied by the diffractive clusters,
for double diffraction dissociation and for double pomeron exchange.
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Figure 4: (a) The diffractive structure function measured by H1 at HERA; the right-hand
y-axis gives the pomeron quark content obtained with the standard flux assuming 4 quark
flavors. (b) The pomeron quark structure function obtained using the renormalized
pomeron flux.
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